The Fairchild Republic A-10 , also widely known by the nickname , is a single-seat, twinjet-turbofan, straight wing, subsonic attack aircraft developed by Fairchild Republic for the United States Air Force (USAF). In service since 1977, it is named after the Republic P-47 Thunderbolt strike-fighter of World War II, but is instead commonly referred to as the "Warthog" (sometimes simply "Pig"). The A-10 was designed to provide close air support (CAS) to ground troops by attacking enemy armored vehicles, tanks, and other ground forces; it is the only production-built aircraft designed solely for CAS to have served with the U.S. Air Force. Its secondary mission is to direct other aircraft in attacks on ground targets, a role called forward air controller (FAC)-airborne; aircraft used primarily in this role are designated OA-10.
The A-10 was intended to improve on the performance and firepower of the Douglas A-1 Skyraider. The Thunderbolt II's airframe was designed around the high-power 30 mm GAU-8 Avenger rotary autocannon. The airframe was designed for durability, with measures such as of titanium aircraft armor to protect the cockpit and aircraft systems, enabling it to absorb damage and continue flying. Its ability to take off and land from relatively short and/or unpaved runways permits operation from airstrips close to the front lines, and its simple design enables maintenance with minimal facilities.
It served in the Gulf War (Operation Desert Storm), the American-led intervention against Iraq's invasion of Kuwait, where the aircraft distinguished itself. The A-10 also participated in other conflicts such as the Yugoslav Wars, Afghanistan, the Iraq War, and against the Islamic State in the Middle East.
The A-10A single-seat variant was the only version produced, though one pre-production airframe was modified into the YA-10B twin-seat prototype to test an all-weather night-capable version. In 2005, a program was started to upgrade the remaining A-10A aircraft to the A-10C configuration, with modern avionics for use with precision weaponry. The U.S. Air Force had stated the Lockheed Martin F-35 Lightning II would replace the A-10 as it entered service, but this remains highly contentious within the USAF and in political circles. The USAF gained congressional permission to start retiring A-10s in 2023, but further retirements were paused until the USAF can demonstrate that the A-10's close-air-support capabilities can be replaced.
The lack of modern conventional attack capability prompted calls for a specialized attack aircraft.Burton, James G. The Pentagon Wars: Reformers Challenge the Old Guard, Annapolis, Maryland: Naval Institute Press, 1993. On 7 June 1961, the Secretary of Defense Robert McNamara ordered the USAF to develop two tactical aircraft, one for the long-range strike and interdictor role, and the other focusing on the fighter-bomber mission. The former was the Tactical Fighter Experimental (TFX) intended to be a common design for the USAF and the US Navy, which emerged as the General Dynamics F-111 Aardvark, while the second was filled by a version of the U.S. Navy's McDonnell Douglas F-4 Phantom II. While the Phantom went on to be one of the most successful fighter designs of the 1960s and proved to be a capable fighter-bomber, its short loiter time was a major problem, as was its poor low-speed performance, albeit to a lesser extent. It was also expensive to buy and operate, with a flyaway cost of $2 million in FY1965 ($ million today), and operational costs over $900 per hour ($ per hour today).
After a broad review of its tactical force structure, the USAF decided to adopt a low-cost aircraft to supplement the F-4 and F-111. It first focused on the Northrop F-5, which had air-to-air capability. A 1965 cost-effectiveness study shifted the focus from the F-5 to the less expensive A-7D variant of the LTV A-7 Corsair II, and a contract was awarded. However, this aircraft doubled in cost with demands for an upgraded engine and new avionics.
The Cobra was a quickly-made helicopter based on the UH-1 Iroquois and was introduced in the mid-1960s as an interim design until the U.S. Army's "Advanced Aerial Fire Support System" helicopter could be delivered. The Army selected the Lockheed AH-56 Cheyenne, a more capable attack aircraft with greater speed for initial production. The development of the anti-tank helicopter concerned the USAF; a 1966 USAF study of existing close air support (CAS) capabilities revealed gaps in the escort and fire suppression roles that the Cheyenne could fill. The study concluded that the service should acquire a simple, inexpensive, dedicated CAS aircraft at least as capable as the A-1, and that it should develop doctrine, tactics, and procedures for such aircraft to accomplish the missions for which the attack helicopters were provided.
In May 1970, the USAF issued a modified, more detailed request for proposals for the aircraft. The threat of Soviet armored forces and all-weather attack operations had become more serious. The requirements now included that the aircraft would be designed specifically for the 30 mm rotary cannon. The RFP also specified a maximum speed of , takeoff distance of , external load of , mission radius, and a unit cost of US$1.4 million ($ million today).Jenkins 1998, pp. 16–17. The A-X would be the first USAF aircraft designed exclusively for CAS. "GAO-07-415: Tactical Aircraft, DOD Needs a Joint and Integrated Investment Strategy." U.S. Government Accountability Office, April 2007. Retrieved 5 March 2010. During this time, a separate RFP was released for A-X's 30 mm cannon with requirements for a high rate of fire (4,000 rounds per minute) and a high muzzle velocity.Jenkins 1998, p. 19. Six companies submitted aircraft proposals, with Northrop and Fairchild Republic in Germantown, Maryland, selected to build prototypes: the YA-9A and YA-10A, respectively. General Electric and Philco-Ford were selected to build and test GAU-8 cannon prototypes.Jenkins 1998, pp. 18, 20.
Two YA-10 prototypes were built in the Republic factory in Farmingdale, New York, and first flown on 10 May 1972 by pilot Howard "Sam" Nelson. Production A-10s were built by Fairchild in Hagerstown, Maryland. After trials and a fly-off against the YA-9, on 18 January 1973, the USAF announced the YA-10's selection for production.Spick 2000, p. 18. General Electric was selected to build the GAU-8 cannon in June 1973.Jenkins 1998, p. 21. The YA-10 had an additional fly-off in 1974 against the Ling-Temco-Vought A-7D Corsair II, the principal USAF attack aircraft at the time, to prove the need for a new attack aircraft. The first production A-10 flew in October 1975, and deliveries commenced in March 1976.
One experimental two-seat A-10 Night Adverse Weather (N/AW) version was built by Fairchild by converting the first Demonstration Testing and Evaluation (DT&E) A-10A for consideration by the USAF. "Fact Sheet: Republic Night/Adverse Weather A-10." National Museum of the United States Air Force. Retrieved 18 July 2010. It included a second seat for a weapon systems officer responsible for electronic countermeasures (ECM), navigation and target acquisition. The N/AW version did not interest the USAF or export customers. The two-seat trainer version was ordered by the USAF in 1981, but funding was canceled by U.S. Congress and was not produced.Spick 2000, pp. 52–55. The only two-seat A-10 resides at Edwards Air Force Base's Flight Test Center Museum.
When full-rate production was first authorized, the A-10's planned service life was 6,000 hours. A small design reinforcement was quickly adopted when initial fatigue testing failed at 80% of testing; the A-10 passed fatigue tests with the fix. 8,000-flight-hour service lives were becoming common at the time, so fatigue testing of the A-10 continued with a new 8,000-hour target. This new target quickly discovered serious cracks at Wing Station 23 (WS23) where the outboard portions of the wings are joined to the fuselage. The first production change was to address this problem by adding cold working at WS23. Soon after, the USAF found that the real-world A-10 fleet fatigue was harsher than estimated, forcing a change to fatigue testing and introduced "spectrum 3" equivalent flight-hour testing.
Spectrum 3 fatigue testing started in 1979. This round of testing quickly determined that more drastic reinforcement would be needed. The second change in production, starting with aircraft No. 442, was to increase the thickness of the lower skin on the outer wing panels. A tech order was issued to retrofit the "thick skin" to the whole fleet, but the tech order was rescinded after roughly 242 planes, leaving about 200 planes with the original "thin skin". Starting with aircraft No. 530, cold working at WS0 was performed, and this retrofit was performed on earlier aircraft. A fourth, even more drastic change was initiated with aircraft No. 582, again to address the problems discovered with spectrum 3 testing. This change increased the thickness of the lower skin on the center wing panel, but it required modifications to the lower Wing spar caps to accommodate the thicker skin. The USAF found it economically unfeasible to retrofit earlier planes with this modification.
In the early 1990s, the A-10 began to receive the Low-Altitude Safety and Targeting Enhancement (LASTE) upgrade, which provided computerized weapon-aiming equipment, an autopilot, and a ground-collision warning system. In 1999, aircraft began receiving Global Positioning System navigation systems and a multi-function display.Donald and March 2004, p. 46. The LASTE system was upgraded with an Integrated Flight & Fire Control Computer (IFFCC).Jensen, David. "All New Warthog." Avionics Magazine, 1 December 2005.
Proposed further upgrades included integrated combat search and rescue locator systems and improved early warning and anti-jam self-protection systems, and the USAF recognized that the A-10's engine power was sub-optimal and had planned to replace them with more powerful engines since at least 2001 at an estimated cost of $2 billion.
During inspections in 1995 and 1996, cracks at the WS23 location were found on many A-10s; while many were in line with updated predictions from 1993, two of these were classified as "near-critical" size, well beyond predictions. In August 1998, Grumman produced a new plan to address these issues and increase life span to 16,000 hours. This led to the "HOG UP" program, which commenced in 1999. Additional aspects were added to HOG UP over time, including new fuel bladders, flight control system changes, and engine nacelle inspections. In 2001, the cracks were reclassified as "critical", which meant they were considered repairs and not upgrades, which allowed bypassing normal acquisition channels for more rapid implementation. An independent review of the HOG UP program, presented in September 2003, concluded that the data on which the wing upgrade relied could no longer be trusted. Shortly thereafter, fatigue testing on a test wing failed prematurely and also mounting problems with wings failing in-service inspections at an increasing rate became apparent. The USAF estimated that they would run out of wings by 2011. Of the plans explored, replacing the wings with new ones was the least expensive, at an initial cost of $741 million and a total cost of $1.72 billion over the program's life.
In 2005, a business case was produced with three options to extend the fleet's life. The first two options involved expanding the service life extension program (SLEP) at a cost of $4.6 billion and $3.16 billion, respectively. The third option, worth $1.72 billion, was to build 242 new wings and avoid the need to expand the SLEP. In 2006, option 3 was chosen and Boeing won the contract. The base contract is for 117 wings with options for 125 additional wings. "Boeing Awarded $2 Billion A-10 Wing Contract." Boeing, 29 June 2007. In 2013, the USAF exercised a portion of the option to add 56 wings, putting 173 wings on order with options remaining for 69 additional wings.Tirpak, John A. "Making the Best of the Fighter Force." Air Force magazine, Vol. 90, no. 3, March 2007. In November 2011, two A-10s flew with the new wings fitted. The new wings improved mission readiness, decreased maintenance costs, and allowed the A-10 to be operated up to 2035 if necessary. "US Air Force to Build 56 Additional A-10 Wings to Keep the Type Operating Through 2035" . Deagel.com, 4 September 2013. Re-winging work was organized under the Thick-skin Urgent Spares Kitting (TUSK) Program.
In 2014, as part of plans to retire the A-10, the USAF considered halting the wing replacement program to save an additional $500 million; "Air Force Budget Proposal Preserves Cherished Modernization Programs" . Nationaldefensemagazine.org, 4 March 2014. "A-10: Been There, Considered That" . Airforcemag.com, 24 April 2014. however, by May 2015 the re-winging program was too advanced to be financially efficient to cancel. "Boeing discussing international A-10 Warthog sales." Flightglobal.com, 20 May 2015. Boeing stated in February 2016 that the A-10 could operate to 2040 with the new TUSK wings.
Throughout its life, multiple software upgrades have been made. While this work was to be stopped under plans to retire the A-10 in February 2014, Secretary of the Air Force Deborah Lee James ordered that the latest upgrade, designated Suite 8, continue in response to congressional pressure. Suite 8 software includes IFF Mode 5, which modernizes the ability to identify the A-10 to friendly units.Majumdar, Dave. "Air Force Reluctantly Upgrades A-10s After Congress Complains." War is Boring blog Additionally, the Pave Penny pods and pylons were removed as their receive-only capability has been replaced by the AN/AAQ-28(V)4 LITENING AT targeting pods or Sniper XR targeting pod, which both have laser designators and laser rangefinders.
In 2012, Air Combat Command requested the testing of a external fuel tank which would extend the A-10's loitering time by 45–60 minutes; flight testing of such a tank had been conducted in 1997 but did not involve combat evaluation. Over 30 flight tests were conducted by the 40th Flight Test Squadron to gather data on the aircraft's handling characteristics and performance across different load configurations. It was reported that the tank slightly reduced stability in the yaw axis, but there was no decrease in aircraft tracking performance. "40th FTS expands A-10 fuel limitations in combat" – Eglin.AF.mil, 26 August 2013
The leading edge of the wing has a honeycomb structure panel construction, providing strength with minimal weight; similar panels cover the flap shrouds, elevators, rudders and sections of the fins. Air International, May 1974, p. 224. The skin panels are integral with the stringers and are fabricated using computer-controlled machining, reducing production time and cost. Combat experience has shown that this type of panel is more resistant to damage. The skin is not load-bearing, so damaged skin sections can be easily replaced in the field, with makeshift materials if necessary.Drendel 1981, p. 12. The ailerons are at the far ends of the wings for greater roll moment and have two distinguishing features: The ailerons are larger than is typical, almost 50 percent of the wingspan, providing improved control even at slow speeds; the aileron is also split, making it a deceleron.Stephens World Air Power Journal. Spring 1994, p. 64.
The A-10 is designed to be refueled, rearmed, and serviced with minimal equipment.Spick 2000, pp. 64–65. Its simple design enables maintenance at forward bases with limited facilities.Donald and March 2004, p. 18. An unusual feature is that many of the aircraft's parts are interchangeable between the left and right sides, including the engines, main landing gear, and vertical stabilizers. The sturdy landing gear, low-pressure tires and large, straight wings allow operation from short rough strips even with a heavy aircraft ordnance load, allowing the aircraft to operate from damaged airbases, flying from taxiways, or even highway strip.Jenkins 1998, p. 58.
The front landing gear is offset to the aircraft's right to allow placement of the 30 mm cannon with its firing barrel along the centerline of the aircraft. During ground taxi, the offset front landing gear causes the A-10 to have dissimilar turning radius; turning to the right on the ground takes less distance than turning left.With the inner wheel on a turn stopped, the minimum radius of the turn is dictated by the distance between the inner wheel and the nose wheel. Since the distance is less between the right main wheel and the nose gear than the same measurement on the left, the aircraft can turn more tightly to the right. The wheels of the main landing gear partially protrude from their when retracted, making gear-up easier to control and less damaging. All landing gears retract forward; if hydraulic power is lost, a combination of gravity and aerodynamic drag can lower and lock the gear in place.Taylor 1982, pp. 363–364.
The cockpit and parts of the flight-control systems are protected by of titanium aircraft armor, referred to as a "bathtub".Jenkins 1998, pp. 47, 49.Spick 2000, p. 32. The armor has been tested to withstand strikes from cannon fire and some indirect hits from shell fragments. It is made up of titanium plates with thicknesses varying from determined by a study of likely trajectories and deflection angles. The armor makes up almost six percent of the A-10's empty weight. Any interior surface of the tub directly exposed to the pilot is covered by a multi-layer nylon spall shield to protect against shell fragmentation. The front windscreen and canopy are resistant to small arms fire.Spick 2000, pp. 30–33. Its durability was demonstrated on 7 April 2003 when Captain Kim Campbell, while flying over Baghdad during the 2003 invasion of Iraq, suffered extensive flak damage that damaged one engine and crippled the hydraulic system, requiring the stabilizer and flight controls to be operated via manual reversion mode. Despite this, Campbell's A-10 flew for nearly an hour and landed safely.Haag, Jason. "Wounded Warthog: an A-10 Thunderbolt II pilot safely landed her "Warthog" after it sustained significant damage from enemy fire." Combat Edge, April 2004. "Capt. Kim Campbell." stripes.com. Retrieved 21 August 2011.
The A-10 was intended to fly from forward air bases and semi-prepared runways where foreign object damage to an aircraft's engines is normally a high risk. The unusual location of the GE Aviation TF34-GE-100 turbofan engines decreases ingestion risk and also allows the engines to run while the aircraft is serviced and rearmed by ground crews, reducing turn-around time. The wings are also mounted closer to the ground, simplifying servicing and rearming operations. The heavy engines require strong support: four bolts connect the engine pylons to the airframe.Bell 1986, p. 64. The engines' high 6:1 bypass ratio (BPR) ±contributes to a relatively small infrared signature, and their position directs exhaust over the tailplanes further shielding it from detection by infrared homing surface-to-air missiles (SAM).
To reduce the likelihood of damage to the fuel system, all four fuel tanks are located near the aircraft's center and are separated from the fuselage; projectiles would need to penetrate the aircraft's skin before reaching a fuel tank's outer skin.Stephens World Air Power Journal Spring 1994, p. 42. Air International June 1979, p. 270. Compromised fuel transfer lines self-seal; if damage exceeds a tank's self-sealing capabilities, check valves prevent fuel from flowing into a compromised tank. Most fuel system components are inside the tanks so component failure will not lead to fuel loss. The refueling system is also purged after use.Wilson 1976, p. 714. reticulated foam lines both the inner and outer sides of the fuel tanks, retaining debris and restricting fuel spillage in the event of damage. The engines are shielded from the rest of the airframe by firewalls and fire extinguishing equipment. If all four main tanks were lost, two self-sealing sump tanks contain fuel for 230 miles (370 km) of flight.
The aircraft's fuselage was designed around the cannon. The GAU-8 is mounted slightly to the port side; the barrel in the firing location is on the starboard side so it is aligned with the aircraft's centerline. The gun's 5-foot, 11.5-inch (1.816 m) ammunition drum can hold up to 1,350 rounds of 30 mm ammunition, but generally holds 1,174 rounds. To protect the rounds from enemy fire, armor plates of differing thicknesses between the aircraft skin and the drum are designed to detonate incoming shells.Spick 2000, p. 44.
The A-10 commonly carries the AGM-65 Maverick air-to-surface missile. Targeted via electro-optical (TV-guided) or infrared systems, the Maverick can hit targets much farther away than the cannon, and thus incur less risk from anti-aircraft systems. During Gulf War, in the absence of dedicated forward-looking infrared (FLIR) cameras for night vision, the Maverick's infrared camera was used for night missions as a "poor man's FLIR".Stephens World Air Power Journal Spring 1994, pp. 53–54. Other weapons include and Hydra 70 rocket pods.Stephens World Air Power Journal, Spring 1994, pp. 54–56. The A-10 is equipped to carry GPS- and laser-, such as the GBU-39 Small Diameter Bomb, Paveway series bombs, Joint Direct Attack Munitions (JDAM), Wind Corrected Munitions Dispenser and AGM-154 Joint Standoff Weapon . A-10s usually fly with an ALQ-131 Electronic countermeasures (ECM) pod under one wing and two AIM-9 Sidewinder air-to-air missiles for self-defense under the other wing.Stephens. World Air Power Journal, Spring 1994, p. 53.
Many A-10s also had a false canopy painted in dark gray on the underside of the aircraft, just behind the gun. This form of automimicry is an attempt to confuse the enemy as to aircraft attitude and maneuver direction.Neubeck 1999, pp. 72–73, 76–77.Shaw 1985, p. 382. Many A-10s feature nose art, such as shark mouth or warthog head features.
The 23rd TFW's A-10s were deployed to Bridgetown, Barbados during Operation Urgent Fury, the 1983 American Invasion of Grenada. They provided air cover for the U.S. Marine Corps landings on the island of Carriacou in late October 1983, but did not fire weapons as no resistance was met.
A-10s fired approximately 10,000 30 mm rounds in Bosnia and Herzegovina in 1994–95. Following the seizure of heavy weapons by Bosnian Serbs from a warehouse in Ilidža, multiple sorties were launched to locate and destroy the captured equipment. On 5 August 1994, two A-10s located and strafed an anti-tank vehicle. Afterward, the Serbs agreed to return the remaining heavy weapons.Sudetic, Chuck. "U.S. Hits Bosnian Serb Target in Air Raid". The New York Times, 6 August 1994. In August 1995, NATO launched an offensive called Operation Deliberate Force. A-10s flew CAS missions, attacking Bosnian Serb artillery and positions. In late September, A-10s began flying patrols again.Donald and March 2004, pp. 42–43.
A-10s returned to the Balkan region as part of Operation Allied Force in Kosovo beginning in March 1999. In March 1999, A-10s escorted and supported search and rescue helicopters in finding a downed F-117 pilot. "Pilot Gets 2nd Chance to Thank Rescuer". Air Force Times, 27 April 2009. The A-10s were deployed to support search and rescue missions, but gradually received more ground attack missions. The A-10's first successful attack in Operation Allied Force happened on 6 April 1999; A-10s remained in action until the end of combat in June 1999.Haave, Col. Christopher and Lt. Col. Phil M. Haun. "A-10s over Kosovo". Air University Press, Maxwell Air Force Base, Alabama, December 2003. Retrieved 21 August 2011.
Iraq War began on 20 March 2003. Sixty OA-10/A-10s took part in early combat.Donald and March 2004, pp. 44–45. United States Air Forces Central Command issued Operation Iraqi Freedom: By the Numbers, a declassified report about the aerial campaign in the conflict on 30 April 2003. During the initial invasion of Iraq, A-10s had a mission capable rate of 85 percent and fired 311,597 rounds of 30 mm ammunition. The type also flew 32 missions to airdrop propaganda leaflets. A single A-10 was shot down near Baghdad International Airport by Iraqi fire late in the campaign.
In September 2007, the A-10C with the Precision Engagement Upgrade reached initial operating capability. The A-10C first deployed to Iraq in 2007 with the 104th Fighter Squadron of the Maryland Air National Guard.Maier, Staff Sgt. Markus. "Upgraded A-10s prove worth in Iraq." U.S. Air Force, 7 November 2007. Retrieved 5 March 2010. The A-10C's digital avionics and communications systems greatly reduced the time to acquire and attack CAS targets.Doscher, Staff Sgt. Thomas J. "A-10C revolutionizes close air support." U.S. Air Force, 21 February 2008. Retrieved 5 March 2010.
A-10s flew 32 percent of combat sorties in Operation Iraqi Freedom and Operation Enduring Freedom. These sorties ranged from 27,800 to 34,500 annually between 2009 and 2012. In the first half of 2013, they flew 11,189 sorties in Afghanistan. "Fight to Keep A-10 Warthog in Air Force Inventory Reaches End Game" . Nationaldefensemagazine.org, September 2013. From the start of 2006 to October 2013, A-10s conducted 19 percent of CAS missions in Iraq and Afghanistan, more than the F-15E Strike Eagle and B-1B Lancer, but less than the 33 percent flown by F-16s. "Air Force, lawmakers clash over future of A-10 again" . Militarytimes.com, 29 April 2014.
In March 2011, six A-10s were deployed as part of Operation Odyssey Dawn, the coalition intervention in Libya. They participated in attacks on Libyan ground forces there. "New air missions attack Kadhafi troops: Pentagon." Agence France-Presse, 29 March 2011.Schmitt, Eric "U.S. Gives Its Air Power Expansive Role in Libya." The New York Times, 29 March 2011, p. A13.
The USAF 122nd Fighter Wing revealed it would deploy to the Middle East in October 2014 with 12 A-10s. Although the deployment had been planned a year in advance in a support role, the timing coincided with the ongoing Operation Inherent Resolve against ISIL militants. 122nd Fighter Wing deploying 300 airmen to Mideast – Journalgazette.net, 17 September 2014 From mid-November, U.S. commanders began sending A-10s to hit IS targets in central and northwestern Iraq on an almost daily basis. "A-10s Hitting ISIS Targets in Iraq" . Military.com, 17 December 2014 "A-10 attacking Islamic State targets in Iraq" . Militarytimes.com, 19 December 2014 Over a two–month period, A-10s flew 11 percent of all USAF sorties since the start of operations in August 2014. "A-10 Performing 11 Percent of Anti-ISIS Sorties". Defensenews.com, 19 January 2015 On 15 November 2015, two days after the ISIL attacks in Paris, A-10s and AC-130s destroyed a convoy of over 100 ISIL-operated oil tanker trucks in Syria as part of an intensification of the U.S.-led intervention against ISIL called Operation Tidal Wave II (named after Operation Tidal Wave during World War II, a failed attempt to raid German oil fields) in an attempt to stop oil smuggling as a source of funds for the group. "US A-10 Attack Planes Hit ISIS Oil Convoy to Crimp Terror Funding" . Military.com, 16 November 2015.
The A-10 was involved in the killing of 35 Afghan civilians from 2010 to 2015, more than any other U.S. military aircraft and also involved in killing ten U.S. troops in friendly fire over four incidents between 2001 and 2015. These incidents have been assessed as "inconclusive and statistically insignificant" in terms of the plane's capability.
On 19 January 2018, 12 A-10s from the 303d Expeditionary Fighter Squadron were deployed to Kandahar Airfield, Afghanistan, to provide CAS, marking the first time in more than three years A-10s had been deployed to Afghanistan.
On 29 November and 3 December 2024, USAF A-10s were used against targets in Syria to defend US forces in eastern Syria as part of the ongoing Syrian civil war. The USAF said the strikes destroyed vehicles, mortars, and a T-64 tank. Concurrent with the fall of the Assad regime on 8 December, A-10s participated alongside B-52s and F-15Es in what the USAF said were "dozens" of airstrikes against over 75 ISIS targets. The strikes were intended to prevent ISIS from benefitting from the political upheaval in Syria.
On 29 March 2025, "several" A-10s from the 124th Fighter Wing were deployed to the Middle East as part of the continued conflict with Houthi forces in Yemen.
In the USAF's FY 2015 budget, the service considered retiring the A-10 and other single-mission aircraft, prioritizing multi-mission aircraft; cutting a whole fleet and its infrastructure was seen as the only method for major savings. The U.S. Army had expressed interest in obtaining some A-10s were the USAF to retire them, "USAF Weighs Scrapping KC-10, A-10 Fleets." Defense News, 15 September 2013. "USAF General: A-10 Fleet Likely Done if Sequestration Continues." Defense News, 17 September 2013. but later stated there was "no chance" of that happening. Army Not Interested in Taking A-10 Warthogs from Air Force DoD Buzz, 25 January 2015 The USAF stated that retirement would save $3.7 billion from 2015 to 2019. Guided munitions allow more aircraft to perform CAS duties and reduce the need for specialized aircraft; since 2001, multirole aircraft and bombers have performed 80 percent of operational CAS missions. The USAF also said that the A-10 was increasingly vulnerable to modern anti-aircraft weapons, but the Army replied that it had proved invaluable due to its versatile weapons loads, psychological impact, and limited logistics needs..
In January 2015, USAF officials told lawmakers that it would take 15 years to fully develop a new attack aircraft to replace the A-10; Pentagon Unveils Program to Help Build 6th Generation Fighter – DoD Buzz, 28 January 2015 that year General Herbert J. Carlisle, the head of Air Combat Command, stated that a follow-on weapon system for the A-10 may need development. Air Force considering A-10 replacement for future close air support Flight global, 13 February 2015 It planned for F-16s and F-15Es to initially take up CAS sorties, and later by the F-35A once sufficient numbers become operationally available over the next decade. One-week study re-affirms A-10 retirement decision: USAF Flightglobal, 6 March 2015 In July 2015, Boeing held initial discussions on the prospects of selling retired or stored A-10s in near-flyaway condition to international customers. However, the USAF stated that it would not permit any to be sold. "USAF rules out international A-10 sales" Flightglobal.com, 24 July 2015.
Plans to develop a replacement aircraft were announced by the US Air Combat Command in August 2015.Drew. James. " A-10 replacement? USAF strategy calls for 'future CAS platform'" FlightGlobal, August 2015. Archive In 2016, the USAF began studying future CAS aircraft to succeed the A-10 in low-intensity "permissive conflicts" like counterterrorism and regional stability operations, noting the F-35 to be too expensive to operate in day-to-day roles. Various platforms were considered, including low-end AT-6 Wolverine and A-29 Super Tucano and the Textron AirLand Scorpion as more basic off-the-shelf options to more sophisticated clean-sheet attack aircraft or "AT-X" derivatives of the T-X program as wholly new attack platforms. USAF studying future attack aircraft options – Flightglobal.com, 9 March 2016
In January 2016, the USAF was "indefinitely freezing" plans to retire the A-10. Beyond congressional opposition, its use in anti-ISIS operations, deployments to Eastern Europe as a response to Russia's military intervention in Ukraine, and reevaluation of F-35 numbers necessitated its retention. Report: A-10 retirement indefinitely delayed – Air Force Times, 13 January 2016 In February 2016, the USAF deferred the final retirement date until 2022 after F-35s replace it on a squadron-by-squadron basis. DOD reveals 'arsenal plane' and microdrones in budget speech – Flightglobal.com, 2 February 2016 In October 2016, the USAF Materiel Command brought the depot maintenance line back to full capacity in preparation for re-winging the fleet. In June 2017, it was announced that the A-10 is retained indefinitely.
The 2022 Russian invasion of Ukraine led to some observers pushing for A-10s to be loaned to Ukraine while critics noted the diplomatic and tactical complications involved. In an interview in December 2022, Ukrainian Defense Minister Oleksii Reznikov said that in late March he asked the US Secretary of Defense Lloyd Austin for 100 surplus A-10s, noting their value against Russian tank columns. However, Austin reportedly told Minister Reznikov that the plan was "impossible", and that the "old-fashioned and slow" A-10 would be a "squeaky target" for Russian air defenses.
Due to opposition from Congress, the USAF has failed to retire the A-10 for many years. However, the Air Force's plan to divest 21 A-10s gained congressional approval in the 2023 National Defense Authorization Act (NDAA). The retired A-10s at Fort Wayne will be replaced by an equal number of F-16s. The 2024 NDAA is expected to retire an additional 42 aircraft, with Air Force Chief of Staff Charles Brown expecting all A-10s to be retired by 2028 or 2029. However, Congress would pause further cuts unless the Air Force demonstrates how other aircraft can fulfill the Close Air Support missions currently undertaken by the A-10. According to Dan Grazier from Project on Government Oversight, the Air Force is ill-prepared for this transition because it requires no Close Air Support training for its F-35 pilots, despite the F-35 being advertised as the main replacement for the A-10.
In 2011, the National Science Foundation granted $11 million to modify an A-10 for weather research for CIRPAS at the U.S. Naval Postgraduate School "NSF to Turn Tank Killer Into Storm Chaser" Science, 11 November 2011. and in collaboration with scientists from the South Dakota School of Mines & Technology (SDSM&T), Dept. of Atmospheric and Environmental Sciences, Research Facilities: A10 Storm Penetrating Aircraft South Dakota School of Mines & Technology. Retrieved 20 February 2017. replacing SDSM&T's retired North American T-28 Trojan. "T-28 Instrumented Research Aircraft" South Dakota School of Mines & Technology. Retrieved 22 July 2012. In 2018, this plan was found to be too risky due to the costly modifications required, thus the program was canceled.
Modernization (A-10C)
Design
Overview
Survivability
Weapons
Colors and markings
Operational history
Service entry
Gulf War and Balkans
Afghanistan, Iraq, Libya, and recent deployments
Future
Other uses
Variants
On 2 April 1997, a U.S. Air Force A-10 from Davis-Monthan Air Force Base piloted by Captain Craig D. Button inexplicably flew hundreds of miles off-course without radio contact. The pilot appeared to maneuver purposefully and did not attempt to ejector seat before the crash. His death is regarded as a suicide because no other hypothesis explains the events. The incident caused widespread public speculation about Button's intentions and whereabouts until the crash site was found three weeks later. The aircraft carried live bombs which have not been recovered.
On 28 March 2003, British Lance-Corporal of Horse Matty Hull was killed by a U.S. A-10 along with five others wounded in the 190th Fighter Squadron, Blues and Royals friendly fire incident.
The saying Go Ugly Early has been associated with the aircraft for calling in the A-10 early to support troops in ground combat.Jenkins 1998, pp. 64–65.
|
|